澳门威尼斯人赌场官网-澳门网上赌场_百家乐规则_全讯网ceo (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

基础百家乐博牌| 百家乐官网三遍| 威尼斯人娱乐成| 澳门凯旋门赌场| 赢家百家乐官网的玩法技巧和规则| 德州扑克 让牌| 澳门百家乐官网游戏| 大发888游戏平台银河| 百家乐打庄技巧| 澳门彩票| 百家乐单机游戏免费下| 百家乐官网技巧之微笑心法| 新世纪娱乐城信誉怎么样| 百家乐最大的赌局| 华硕百家乐官网的玩法技巧和规则 | 美国百家乐官网怎么玩| 大发888娱乐城送白菜| 百家乐官网中的小路怎样| 百家乐正品| 百家乐桌布橡胶| 百家乐官网编单短信接收| 全讯网888| 百家乐官网平一直压庄| 百家乐官网赌博在线娱乐| 金沙百家乐官网现金网| 胜负彩| 东方太阳城二期| 博天堂百家乐官网官网| 百家乐官网视频官方下载| 大发888送彩金| 澳门百家乐庄闲的玩法| 成都南偏西24度风水| 镇雄县| 六合彩| 威廉希尔| 亲朋棋牌捕鱼辅助| 大连娱网棋牌官网| 大发888在线娱乐二十一点| 大发888游戏平台888| 至尊百家乐娱乐场开户注册 | 24山向吉凶详解视频|