澳门威尼斯人赌场官网-澳门网上赌场_百家乐规则_全讯网ceo (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

威尼斯人娱乐城平台打不开| 百家乐官网网站排名| 六合彩特码开奖结果| 百家乐官网制胜法| 现金网hg8568.com| 百家乐官网博牌规| 朝阳市| 如何胜百家乐的玩法技巧和规则 | 百家乐官网发牌千数| 赌场百家乐是如何| 现金百家乐官网赌法| 百家乐网上真钱娱乐网| 百家乐官网投注程式| 浩博百家乐娱乐城| 百家乐官网实战技术| 百家乐算牌e世博| 澳门百家乐官网娱乐城送彩金 | 单机百家乐官网破解方法| 鸿胜博娱乐| 网上百家乐信誉度| 百家乐官网singapore| 百家乐在线游戏| 百家乐筹码订做| 萨嘎县| 大发888游戏平台 黄埔网| 百家乐打法介绍| 墓地风水24山| 百家乐官网永利娱乐平台| 石城县| 大发888官方df888gwyxpt| 闲和庄百家乐娱乐网| 百家乐获胜秘决| 真人百家乐官网送钱| 爱玩棋牌官方下载| 网上百家乐有假的吗| 利都百家乐官网国际娱乐场开户注册 | 葡京百家乐玩法| 电脑赌百家乐官网可靠吗| 揭东县| 博客国际娱乐| 棋牌游戏源码|